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LOW-RANK MODIFICATION 
OF THE UNSYMMETRIC LANCZOS ALGORITHM 

THOMAS HUCKLE 

ABSTRACT. The unsymmetric Lanczos algorithm is an important method for 
eigenvalue estimation and for solving linear equations. Unfortunately, the al- 
gorithm may break down without providing useful information; this is referred 
to as a serious breakdown in the literature. Here, we introduce a low-rank mod- 
ification of the original matrix A in the case of a serious breakdown. This 
modification can be used to cure a serious breakdown as long as we have or- 
thogonality of the already computed Lanczos vectors. We can switch to a new 
rank-I modified matrix A = A + abT such that 

- the Lanczos algorithm has no serious breakdown in this step when applied 
on A, 

- the already computed variables in the Lanczos algorithm for A and A 
coincide, 

- using a Lanczos-based iterative solver, e.g. BCG or QMR, with start vec- 
tors x0 = 0 and vI = f, we have A-If = A1-f, and thus by con- 
tinuing the Lanczos algorithm with A we automatically get the desired 
solution A- 1 f. 

Also, if the Lanczos vectors have lost their orthogonality, we show theoretically 
and by numerical examples that the modified Lanczos method has the same 
convergence behavior as the Lanczos method without breakdown. Thus, in the 
case of a serious breakdown we only have to compute the new rank-I modified 
matrix A and step further in the original algorithm now using A . 

1. A MODIFIED LANCZOS ALGORITHM 

Let A be an unsymmetric matrix, v1 and w1 two vectors of length 1 that 
are not orthogonal, and f1 =y, = 0, d1 = wTv, #& 0. Then the unsymmetric 
Lanczos algorithm is defined for j = 1, 2, ... by the recursion 

= wTAv1/dj, 

vj+j = Avj - ajvj - ijvj_1, ij=i = A?w1 - - 

Vj+= I+I 'bj Wj+= 7bwj+lS 

(1), I = iV+i = 
dj1= wf+ivj+i, 2j+i dj fi+i dj 
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A serious breakdown occurs if and only if Idj1 < e with IIjvII > e and I I jII > e 
for a small positive e < 1 . The recursion (1) generates a tridiagonal matrix 

Tj= tridiag (Ykdk a lk+1) 

a diagonal matrix Dj = diag(di, ..., dj), and Vj = (vI, ...,vj), Wj = 

(w, ...I , wj) . This yields the matrix equations 

(2) AVj = Vj1Tj + j+e, W/VeTj =Dj, 

where ej = (0, ..., 0, 1, 0, ..., O)T with 1 at the jth position. 
These formulae can be applied to find eigenvalue estimates for A [8, 1, 3] 

and for the iterative solution of linear equations in A, e.g. with QMR or BCG 
[9, 5, 13, 10]. In the case of a serious breakdown with dj 0 O, look-ahead 
strategies can be introduced to replace the tridiagonal matrix Tj by a block 
tridiagonal matrix [1 1, 14, 6, 3, 4, 2, 7] or a band matrix [15]. 

In this note we will analyze another possible way to handle breakdown. To 
this end, we replace the original matrix A by a rank-i modification A + abT, 
where a and b are chosen in such a way that the Lanczos method applied on 
A +abT has no breakdown in this step, and that the already computed numbers 
and vectors remain unchanged. Let us assume that the algorithm has computed 
all variables until the (j - 1)st step, where we get Idjl = IwTvjl < e for a 
given small positive e and I5vj I > e and IItbjI > e. In the following we will 
show how a and b can be chosen to cure this serious breakdown. We cannot 
orthogonalize Avj against w;, and ATwj against vj, in order to define vj+I 
and wj+l by (1). But we can still orthogonalize ATwj against v, ... vjl . 
This gives 

VT A TWI 
'd:j+= ATWj - -1 W _I 

=A Twj _ (j + a}-IV-1I + 1jv 
I 
Vj-2)TW. 

dj- I 

= A wT dI I (I.(- ATWj), 

_ Wj+l 
Wj+ 

j1 
= 

1 

In the same way, we can derive Wj+2 by orthogonalizing ATwj+I against vj1-, 
or more generally, 

VfT A TwI+k TWj+k2 

Wbj+k1 I A TW+k2 
- w+k_2 w I = A Twj+k2 - d> 2 

W 

= ATwj+k-2 _IIl jII(vTATWj+k-3)W (3) AT 

Wj+k-I Wj+k1I WJ+k1 
II1j+k-1I 

Now, let k be the first index with Iw T+klAvjl > n(A)e, where n(A) is some 
norm of A, for example the 1-norm. If there exists no such k, then we have the 
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case of an incurable breakdown, and we have to restart (see [14, 1 1]). Otherwise, 
without further orthogonalization we can define 

(4) WJ+k := ATwj+k-l. 

By this definition we relax the orthogonality conditions on wj+k and in return 
get the very useful equation 

(5) wfT+kAlvj-l = 0. 

Furthermore, wj, ..., Wj+k1I are orthogonal on v1, ..., vJ_, and WJ+k iS 

orthogonal on vI, .. , vj-2. We want to find a new matrix A := A + abT with 
vectors a and b such that nearly all computed variables remain unchanged 
and the Lanczos algorithm applied to A has no breakdown in the (j - 1)st 
step. We can satisfy these conditions by choosing a I w1, ... , Wj2 and 
b e span(wj- , ... , Wj+k),. Let us define 

(6) a := vj11 and b :=Ajwj+k, A:=A+ Ajvj1wf+k. 

We denote the new variables of the Lanczos method applied to A by an addi- 
tional tilde. Then, for the initial values vi := v, and zbl = w, we get 

ar. I = Car..I , Vr = Vr, Wlr = Wr , dr = dr, 

fr = fr, yr = yr for r = 2, ...,j - 1, 

WT (A + AjvjlWfT+k)v1 
_l= 

~~~dj- I 

=cJ_I + AJI(wj+kVj1l) = Caj_1 + AjlljIII(wjf+k -Vi). 

Here, we use (4) and the original recursion in Avj_ I = V; +a1- I v11 I + j- I Vj-2- 
Furthermore, we get 

vj= (A + abT)v1 . - I v I - I V V-2 = fj, 

and 

(7) Tw= (A + ab T)T - Wj_I -3j- I Wj-2 

= UbJ + Aj(dj_ I Wj1+k - (wf .-)jI), 

which yields 

( 8) ?Jw1V = Thfj Vy + Ajdjw IJ+kVj = ?jVJ + jdI ijII(f+k- I Avjv). 

Now, for small Ai with 

d_ 1(wTk Av1 | - I ( +k -I i | 

the Lanczos algorithm applied on A can continue without breakdown. Fur- 
thermore, with A also A is regular. This is obvious by considering (5) and the 
Sherman-Morrison-Woodbury formula (SMW) 

'- = (A + abT)-1 = A-' - A-labTA-l/(l + bTA-'a) 
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with 

A- vj- I= A' vj1I and 1 i wj+kA -vj1 = 1 
I k_lVi_1 = 1 = 0. 

For A, equation (2) gives 
(9) ~~~~~~~~~~T -(9) A Vm = Vm Tm + )m+ 1 em. 

For A, equation (9) yields 

A Vm = Vm Tm + fm+ I eT jv_ 1jWVj+k VT 

- Vm(Tm - iei1W+kVm) + m+ I em. 

Thus, the tridiagonal matrix in (2) has to be replaced by a tridiagonal matrix 
plus a rank- 1 matrix. In general, there may occur more breakdowns. Hence, by 
treating all these, say p, breakdowns in the same way, we arrive at a represen- 
tation 

p 

A Vm = Vm Tm + Om+1 em-E - Zs 1 W+ks Vm 
s=l 

(10) = Vm (Tm iseisiWs+kYm) + fm+lem 

= Vm(Tm -EmXm ) + m+I em 

with 
Em =(el,,...) and Xm = AWTVm, 

where A = diag(Al, ..., )p) and W# = (wjl+k, ... wjp+kP) . The matrix Xm can 
be computed recursively by 

Ji+k Vm+1 

XT =XT * ) 

Note, that X;T has m columns and the number of rows is equal to p, the 
number of occurred breakdowns. In the case of a further breakdown we have 
to add a new row to XmT with the first elements in this new row all zero. 

Modified Lanczos algorithm: 

start with vectors v1 and w, having 2-norm 1, d1 = wv TV : 0, J1 =Yi = 0, 

for j = 2, 3, ... 

compute aj-1, vj, wj,'j, vj, wj as in (1), so long as 1IIjil > e and llzjll > e; 
if |dj| = IwTvjvI < E: replace A by A + AjV>1Wf+k with (3), (4), (6); 

compute the new aj-I, wj, dj by (7) and (8); 

compute /3j, yj by (1) 

The additional costs of this modified algorithm are one inner product WNJ kVm 

and one SAXPY for each occurred breakdown in order to compute the new 
Lanczos vector f1m+1 . For zbm+I we need no additional computations in view 
of V,T wbm = 0 in exact arithmetic. It is also possible to compute A explicitly 
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in 0(n2) operations, but in most applications, e.g. for sparse matrices, this will 
be too expensive. 

Note that we could also replace (3) and (4) by corresponding equations for 
Vj+k instead of Wj+k. This would lead to a new matrix A of the form A = 
A + AjVj+kWT_ I 

If we are interested in eigenvalue estimates for A, we need aj, /j3, yj, dj, 
and XTn, which already occur in the modified Lanzcos algorithm. Then, we can 
compute the eigenvalues of Tm -EmX,T as approximations to the eigenvalues of 
A, e.g. using inverse iteration in connection with Sherman-Morrison-Woodbury 
(SMW) (or secular equation methods). 

In [ 10] Parlett has introduced the idea of a low-rank modification in connec- 
tion with the symmetric Lanczos algorithm for solving Ax = b with several 
right-hand sides. If the linear equation is solved using the Lanczos algorithm, 
one can continue the algorithm with a new right-hand side which leads to a 
low-rank perturbation of the tridiagonal Lanczos matrix. The idea presented 
here perturbs the original matrix A and is therefore quite different from the 
one in [ 10]. 

2. SOLVING LINEAR EQUATIONS USING THE MODIFIED LANCZOS ALGORITHM 

If we want to solve a linear equation of the form Ax = b (ro = b-Axo = v ), 
we can also apply the modified Lanczos method. First, let us assume that the 
starting vector x0 = 0. Then we get the same starting residual rO = b for 
both A and A. This is always possible by replacing x by x - x0 and b by 
b - Axo. Now, we can compute a solution x for Ax = b with the modified 
Lanczos algorithm, e.g. with QMR or any other Lanczos-based method, starting 
with the matrix A and switching to A if a serious breakdown occurs. Then, 
we can use SMW to compute 

p -1 

(l11) x = Alb = (A- ZAsvjiS_,W+k ) b = (A- V#oYT)-lb 
s=l 

=x + A1 V#(I- y-TAV-)I-lyT>= X 

with 
V# = (vj,1, ...,vjp1) and Y#T= AW#T. 

Here, (1 1) follows from the equation 

w1+kx = WI+k-1A(A + V#Y#T)V1v 

= T V T V#B1 ( j1w+k1 1 v 
W1+klVI- J V1 = 

O 

by using (4) and the related orthogonality relations. Thus, the solution A-lb 
computed with the modified Lanczos algorithm gives also the desired vector 
x = A-1 b without additional costs. 

Until now we have ignored the numerical aspects of the method. Here, the 
main questions are: 

(i) how to define a breakdown (how to choose e), 
(ii) how large should be the rank-i perturbation (how to choose A), 
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(iii) how can we take into account the numerical loss of the biorthogonality 
of the Lanczos vectors. 

First, if e is too large (e.g. > 10-3), then we can get many unnecessary 
rank-1 perturbations. On the other hand, if e is too small (e.g. < 10-10), 
then we miss a possible breakdown which leads to a loss of accuracy. This loss 
of accuracy may cause nonconvergence or a series of subsequent breakdowns. 
Many numerical examples in MATLAB with machine precision 10-16 showed 
that e = 10-6 or 10-5 give a good criterion for deciding whether a breakdown 
occurs or not. For a similar discussion, see [3] and [12]. In [12], Parlett suggests 
E = eps"/3 or eps1/4 for machine precision eps, and our numerical examples 
support this choice. 

Similar problems arise with A. If A is too small, then the breakdown is not 
cured. If A is too large, then abT predominates A in A, and the convergence 
behavior of the iterative method may change totally. Specifically, if we think 
of preconditioned iterative methods, then by introducing a predominant rank- 1 
perturbation the spectrum of the new matrix may get worse, and the effect of 
the preconditioner may be disturbed. Hence, let us define 

(12) j _( kA 

with 101 > 1 to cure the breakdown. Furthermore, ,j should be less than 
n(A) for some norm of A. Then, the convergence of the iterative method will 
remain nearly unchanged. 

Unfortunately, the Lanczos vectors will lose their biorthogonality in the 
course of the algorithm. Therefore, the new matrix A and the related tridi- 
agonal matrix T computed by the modified Lanczos algorithm will satisfy (9) 
not exactly. How good (9) and (10) are fulfilled depends on the magnitude 
of the numbers Aj (wTVj_ ) and )j(WfTkVs) for s = 1, ... , j - 2. In exact 
arithmetic these numbers would be zero independent of )j, but in practice, 
wTvj1- may be near 1. Hence, reorthogonalization seems to be necessary. But 
we will show in the following that the loss of orthogonality only perturbs the 
convergence for solving A4-lb but has no influence on the convergence to the 
really wanted A'- b as long as the modified algorithm converges. 

Furthermore, in view of the loss of orthogonality we need in every step one 
additional SAXPY and one additional inner product to compute the new vector 
Wj+1 . In the following we will analyze the modified algorithm, taking into 
account the loss of orthogonality. 

In exact arithmetic the modified Lanczos algorithm, e.g. with QMR, would 
be equivalent to solving Ax = b with this method, but in view of the loss of 
orthogonality the already computed numbers are no longer connected with A. 
Let us consider the influence of the loss of orthogonality. For simplicity, we 
assume that there is only one serious breakdown in the (j - 1)st step (dj 1 O) . 
Then we can write the recursion in the matrix form 

(13) AV - = Vl T' + vj-lef' 2, 

(14) AV2 = V2T2 + _ljvVj2e_- ).1-V1WT_kV2 + Tm+le7 

with 
V1 = (v, ..., V12) and V2 = (vj_,.., vm). 
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Combining (13) and (14), we get 

(15) AV = VT- Ajvji W+k(T V2)T+Vm+ieiT. 

Here, V - (V1, V2), and TI, T2, T are tridiagonal matrices with coefficients 
as in (1). If the orthogonality would still hold, we could replace in (15) the 0 
by VI , which would give us again relations between the approximate solutions 
of A-lb and A-lb. 

First, let us consider the Galerkin method. Here, we define an approximate 
solution xm = Vzm in such a way that 

0 = WTrm = WT(AVzm - Vel) 
(16) = WTV((T-ijejlwfT+k(O V2))Zm -el) + WTim+lem-. 

If we ignore the last term, which would be 0 in exact arithmetic, the Galerkin 
condition (16) leads to 

(17) HZm,H = (T-AejewT+k(O V2))Zm Hel, Xm,HVZm,H. 

If we try to solve Ax = b in spite of the loss of orthogonality, we would use 

(18) Tzm,T = el , Xm,T = VZm,T, 

which would provide us also with the solution for Ax = b in exact arithmetic. 
Hence, we have two different ways to define estimates for A- 1 b . Let us assume 
that both matrices T and H are regular. With (14) we get 

W wT+k(0 V2)T-'el = WT+kl (0 V2T + vm+le T 

= wf+k-1( V2)e1 + Wf+k-1(O m+lem7j+2)T1ei 

= (e Tl'e)(w +k_lWm+l). 

Together with (1 5), this shows 

AVT-'el = V1 + fVm+i (emT-'el) - AjVj_lW+k(O V2)T-'e 

= vI + (emT-'el)(,m+ -I (Wj+k-lvm+l)vj-1). 

In view of ( 18), we get for the desired solution 

A-lb = A-1vl = Xm,T + (e TT-'el)(-A-1im+l +Aj(WT+klm+1)A1Vj-1) 

Similarly, 
wfT(O V2)T-lej_I = (eTT- 1ejp)(wf+k im+) 

and 
AXm,H = AVH-le, = V, + im+i(eiTH-'el) 

with 

eTH-1el = (e7T1e1) 1 el) (eT1e1 1)(wf+klim+1Y 

Hence, the approximate solutions that derive from (18) and (17) depend both 
on the size of (e4TT-'el))m+l , and this last term describes the convergence of 
the computed approximations for solving A4-lb. If therefore Xm,H or Xm, T 
gives a good approximation for A- b, then the other will also be a good ap- 
proximation. Thus, the vector xm, T = VT- el, the solution for the Galerkin 



1584 THOMAS HUCKLE 

condition of the modified Lanczos algorithm using only the tridiagonal matrix 
without rank-I modification (as if one would like to solve A- b), converges in 
the same way like Xm,H, the estimate (17) which also takes into account the 
rank-1 term. But, in view of the loss of orthogonality, Xm, T and Xm, H will in 
general be no longer approximate solutions to Ax = b. 

In the same way, instead of the Galerkin condition, we can use the QMR 
condition [4], 

(19 ) min Om ((Tm + m f- seise wT+ kVm) zm-el) 

or 
(20) min 1lQm(Tm+i,mzm -ej)II 
with Tm+ ,m a tridiagonal matrix with m + 1 rows and m columns and Om 
a diagonal scaling matrix, e.g. Om the m x m identity matrix. To get solutions 
for Ax = b, we can solve (17), (18), (19), (20) directly, or use recursive updates 
of QR-decompositions of the occurring tridiagonal matrices as described in [3]. 

Hence, we get the following general method for solving linear equations based 
on the Lanczos method: 

Iterative solution of linear equations with the modified Lanczos algorithm: 
- transform Ax = b such that the starting value is xo = 0; 
- choose a Lanczos-based iterative algorithm e.g. as described in [13] or 

[3]; 
- if a serious breakdown occurs, use the computed last Lanczos vectors to 

find a rank-1 modification of A as described in the modified Lanczos 
algorithm; continue in the basic iterative method, now using the new 
modified matrix without any further changes. 

There are some variations in getting the rank-1 term in the case of a serious 
breakdown. For example, 

- one can compute a fixed number of new vectors wj+p-I of the form 
(3), and then choose the rank-1 term and the index k in such a way 
that Iw+kl AvjI is maximal [3], 

- use Vj+k1I and wj defined as in (3-4) to get a rank-1 perturbation, 
- replace the recursion (3) for the vectors W T by another formula j+k-I rfoml 

that leads to the same orthogonality relations. 
The advantages of the modified Lanczos solvers are that 

- they are very easy to program, because the original algorithm remains 
unchanged, 

- the additional costs of two inner products and two SAXPY's per itera- 
tion are negligible for most matrices, 

- the convergence behavior is unchanged. 

3. NUMERICAL EXAMPLES 

The numerical examples have to demonstrate two assertions: 
- the constructed rank-1 perturbation gives the desired solution indepen- 

dent of the loss of orthogonality, 
- the modified algorithms with properly chosen e and A work in practice. 
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First, we give an example in which with full orthogonality the modified Lanc- 
zos algorithm provides us with the solution for Ax = b and Axi = b, where 
x = x. We choose e = 10-6, b = = = el,w = (1, 1, 1,U4,...) with 
random numbers uj between 0 and 1, and the matrix 

'O ... ... O 1' 

A= 0 *-0- 

Here, a serious breakdown occurs only in the first step j = 2. Examples with A 
appear often in connection with breakdowns in the Lanczos algorithm because 
one can easily produce a serious breakdown in one of the first iteration steps. 
We run the modified Lanczos algorithm with matrix size n = 150 for j = 
2, 3, .. . , 170 = m and different values of 9 in (12). In the QMR condition we 
always choose Qm to be the identity matrix. For other random initial vectors v1 
and wI with no breakdown we get in the 170th step relative residuals rjrl/ol 
between 10-6 and 10-10. 

TABLE 1. Norm of the relative residual with exact breakdown 
at j = 2, m = 170 

9 r(A) r(A) (1)7) r(A) (18) r(A) (19) r(A) (20) 
10 5.8E - 06 5.8E - 06 5.8E - 06 4.5E - 09 4.5E - 09 
100 5.4E-10 5.4E-10 5.4E-10 4.2E-10 4.2E-10 
103 1.6E -09 1.6E - 09 1.6E -09 2.7E - 10 2.6E - 10 

104 9.7E-10 9.7E-10 9.5E-10 2.1E-10 2.OE-10 
105 4.4E - 08 4.4E - 08 4.4E - 08 2.5E - 08 2.2E - 08 

In the second example, we replaced A by a perturbed matrix A + 3E, where 
E was a random matrix with entries between - 1 and 1. Using 3, one can de- 
sign near breakdowns to analyze the stability of the modified Lanczos algorithm. 
For 131 larger than 10-4 no breakdown occurred in the modified algorithm. 
For example, with 3 = 10-3 the solution was computed without rank-i modi- 
fication with relative residual norm 6.7E - 06 for m = 150 and 5.OE -- 8 in 
the 152nd step. 

TABLE 2. Norm of the relative residual with breakdown at j = 

2, e = 10-6,3 = 10-5, QMR(20) 

m/e 10 100 103. i104 0 
150 1.4E-06 5.2E-08 3.6E-08 8.9E-10 0.66 
151 l.lE-06 5.OE-08 1.7E-08 7.5E-10 0.45 
152 l.OE-06 4.5E-08 1.7E-08 7.2E-10 1.5E-08 
160 l.OE-06 3.7E-08 1.5E-08 6.9E-10 1.4E-09 
170 l.OE-06 3.2E-08 1.5E-08 6.9E-10 7.2E-10 
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Both examples show how the convergence depends on the choice of 9. If 9 
is too small, then the breakdown is not cured and the accuracy is not good. For 
9) too large, the spectra of A and A are different, and therefore the algorithm 
needs more iterations. 

A serious breakdown is a very rare event. But the rank-i modification is 
independent of a breakdown. Hence, to show the numerical behavior, we can 
also introduce a rank-i modification without breakdown; this will be called an 
artificial breakdown. 

In the following we introduce an artificial breakdown in the 39th step. In 
spite of 1d40 I > e, we use a rank-1 modification of the Lanczos algorithm as if 
a breakdown had occurred. Here, we take as third example a matrix A with 
1 as antidiagonal elements and 0.5 on the first subdiagonal, n = 150, and 
9= 1000. For n =5, A looks like 

O 0 0 0 1 
.5 0 0 1 0 

A= 0 0.5 1 0 0. 
0 1 0.5 0 0 
<1 0 0 0.5 02 

The right-hand side b was chosen as a random vector of norm 1. The last 
column in Table 3 shows the residual with no breakdown, the other columns are 
the results of using an artificial breakdown for j = 40. So we can compare the 
behavior of the original and the modified Lanczos algorithm using the Galerkin 
method. Tables 3 and 4 show that in view of the loss of orthogonality the 
residual error Ax - b is large while the true residual Ax - b gets small. 

TABLE 3. Example 3 with artificial breakdown at j = 40 or no 
breakdown (last column), Galerkin method, 9 = 1000 

m r(A) r(A) (17) r(A) (18) r(A) Gal 
35 1.12E - 04 1.12E- 04 1.12E - 04 1.12E - 04 
40 1.36E-06 1.25E-06 1.25E-06 1.82E-06 
45 4.70E-07 5.24E-07 5.14E-07 1.45E-07 
50 1.28E - 08 1.72E - 08 1.72E - 08 l.91E - 08 
60 1.30E - 07 4.77E - 10 4.77E - 10 4.OE - 10 
70 1.30E-07 1.28E-11 1.28E-11 1.70E-11 
80 1.30E-07 7.90E-12 7.89E-12 3.25E-12 

The last example differs from the preceding example by the size n = 2000 
and A(n, n) = 30. This large diagonal element is introduced to have one large 
eigenvalue which leads to fast convergence for the corresponding eigenvector 
and to an early loss of the orthogonality of the Lanczos vectors. Furthermore, 
we introduce two artificial breakdowns at j = 20 and j = 40. The last two 
columns in Table 4 are for the case of no artificial breakdowns. 
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TABLE 4. Example 4 with artificial breakdown at j = 20, 40 or 
no breakdown, e = 1000 

m r(A) r(A) (18) r(A) (20) r(A) Gal r(A) QMR 
15 1.1E-02 I.lE-02 L.E - 02 1.1E - 02 L.lE - 02 
25 8.8E - 04 8.8E - 04 6.9E - 04 8.8E - 04 6.9E - 04 
35 4.7E - 05 4.7E - 05 2.9E - 05 4.3E - 05 2.7E - 05 
45 4.2E-01 2.9E-05 6.OE-05 L.lE-05 8.7E-06 
55 4.2E-01 1.2E-06 3.1E-05 L.1E-06 3.OE-07 
65 2.OE - 07 2.OE - 07 2.9E - 07 6.2E - 09 6.4E - 09 
75 4.2E -01 4.5E -09 3.1E -09 6.2E -09 9.2E - 10 

These numerical examples show that the low-rank modification of the mod- 
ified Lanczos method and also the loss of orthogonality does not change the 
convergence towards the desired solution A- b. 

4. CONCLUSIONS 

We have introduced a low-rank modification to the unsymmetric Lanczos 
algorithm. This approach can be used to cure a serious breakdown. For solv- 
ing linear equations Ax = b, in the case of a serious breakdown in the jth 
step, one has only to replace the matrix A by a rank-I modification A and 
continue the Lanczos algorithm in the (j - 1)st step with this new matrix but 
using only the tridiagonal matrix without rank-i modification to compute ap- 
proximations for A- b. This generates directly approximate solutions for the 
linear equation. In exact arithmetic the algorithm would compute the solution 
4- 1 b = A- 1 b . Theoretically, and by numerical examples, we show that the loss 
of orthogonality of the Lanczos vectors has no influence on the convergence, 
and that the low-rank modified algorithm has the same convergence behavior as 
the original Lanczos-based method. In the case of a serious breakdown we can 
compute the new matrix A explicitly, or we keep the rank-I term in memory 
and then have to compute two additional inner products and SAXPY's in every 
iteration step. If we want to compute eigenvalue estimates based on the mod- 
ified Lanczos algorithm, we have to compute the eigenvalues of a tridiagonal 
matrix plus a low-rank term. 
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